from collections import namedtuple from Crypto.Cipher import AES
Complex = namedtuple("Complex", ["re", "im"])
defcomplex_mult(c1, c2, modulus): return Complex( (c1.re * c2.re - c1.im * c2.im) % modulus, # real part (c1.re * c2.im + c1.im * c2.re) % modulus, # image part )
defcomplex_pow(c, exp, modulus): result = Complex(1, 0) while exp > 0: if exp & 1: result = complex_mult(result, c, modulus) c = complex_mult(c, c, modulus) exp >>= 1 return result
defN(z): return z.re^2 + z.im^2
defmain(): G = Complex(re=73262634841171466327661318242290161950211431479114608095823989134327110985969, im=65755687729456835474634629001774801167226495053887640450742873574251217890823) order = 874213797269245596318017751276960050439264630675688743563805790310593249529712925766768059413159410043532678649309 n = 76071024537202810519827505982296658467967125909496933634680583857230199582569 P = Complex(re=73602013369532354643286048849422130752778967384312183501245273016773046579111, im=18913813395025053157625957896884800142048146799015571023438997237364521272465) encrypted_flag = b"n\xcf\x05eQ\xec\xcd\x04\x01E\xa5gq\x8a'\x01\x1c\xebE\xdb\x0f\x0e\xda\x01i\xbcbM\x97\x10\xfe\xb4#wS\xadj\x91\xc7\x7f\x1f3\x1f\x8d0\xa7\xc6J\xc5c\xda<^%\xc5\xa3\x05_;g\xdb\x1c\x8f\x1b" # Multiplicative order is needed as secret = k + i*G_order # for some non-negative integer i G_order = Integers(n)(N(G)).multiplicative_order()
# Clever Sage method takes about 3 mins for me k = int(pari(f"znlog({N(P)}, Mod({N(G)}, {n}))")) # 15208121869682279508410349753961596563525285197548874227988093797553755490107 whileTrue: key = k.to_bytes((k.bit_length() + 7) // 8, 'big') flag = AES.new(key, AES.MODE_ECB).decrypt(encrypted_flag) ifb'CTF'orb"ctf"in flag: print(f'Secret: {k}') print(f'Flag: {flag}') k += int(G_order)